13 research outputs found

    The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach

    Get PDF
    (14)C-Labelled octulose phosphates were formed during photosynthetic (14)CO(2) fixation and were measured in spinach leaves and chloroplasts. Because mono- and bisphosphates of d-glycero-d-ido-octulose are the active 8-carbon ketosugar intermediates of the L-type pentose pathway, it was proposed that they may also be reactants in a modified Calvin–Benson–Bassham pathway reaction scheme. This investigation therefore initially focussed only on the ido-epimer of the octulose phosphates even though (14)C-labelled d-glycero-d-altro-octulose mono- and bisphosphates were also identified in chloroplasts and leaves. (14)CO(2) predominantly labelled positions 5 and 6 of d-glycero-d-ido-octulose 1,8-P(2) consistent with labelling predictions of the modified scheme. The kinetics of (14)CO(2) incorporation into ido-octulose was similar to its incorporation into some traditional intermediates of the path of carbon, while subsequent exposure to (12)CO(2) rapidly displaced the (14)C isotope label from octulose with the same kinetics of label loss as some of the confirmed Calvin pathway intermediates. This is consistent with octulose phosphates having the role of cyclic intermediates rather than synthesized storage products. (Storage products don’t rapidly exchange isotopically labelled carbons with unlabelled CO(2).) A spinach chloroplast extract, designated stromal enzyme preparation (SEP), catalysed and was used to measure rates of CO(2) assimilation with Calvin cycle intermediates and octulose and arabinose phosphates. Only pentose (but not arabinose) phosphates and sedoheptulose 7-phosphate supported CO(2) fixation at rates in excess of 120 μmol h(−1) mg(−1) Chl. Rates for octulose, sedoheptulose and fructose bisphosphates, octulose, hexose and triose monophosphates were all notably less than the above rate and arabinose 5-phosphate was inactive. Altro-octulose phosphates were more active than phosphate esters of the ido-epimer. The modified scheme proposed a specific phosphotransferase and SEP unequivocally catalysed reversible phosphate transfer between sedoheptulose bisphosphate and d-glycero-d-ido-octulose 8-phosphate. It was also initially hypothesized that arabinose 5-phosphate, an L-Type pentose pathway reactant, may have a role in a modified Calvin pathway. Arabinose 5-phosphate is present in spinach chloroplasts and leaves. Radiochromatography showed that (14)C-arabinose 5-phosphate with SEP, but only in the presence of an excess of unlabelled ribose 5-phosphate, lightly labelled ribulose 5-phosphate and more heavily labelled hexose and sedoheptulose mono- and bisphosphates. However, failure to demonstrate any CO(2) fixation by arabinose 5-phosphate as sole substrate suggested that the above labelling may have no metabolic significance. Despite this arabinose and ribose 5-phosphates are shown to exhibit active roles as enzyme co-factors in transaldolase and aldolase exchange reactions that catalyse the epimeric interconversions of the phosphate esters of ido- and altro-octulose. Arabinose 5-phosphate is presented as playing this role in a New Reaction Scheme for the path of carbon, where it is concluded that slow reacting ido-octulose 1,8 bisphosphate has no role. The more reactive altro-octulose phosphates, which are independent of the need for phosphotransferase processing, are presented as intermediates in the new scheme. Moreover, using the estimates of phosphotransferase activity with altro-octulose monophosphate as substrate allowed calculation of the contributions of the new scheme, that ranged from 11% based on the intact chloroplast carboxylation rate to 80% using the carboxylation rate required for the support of octulose phosphate synthesis and its role in the phosphotransferase reaction

    Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.Peer reviewe

    Nerve growth factor gene locus explains elevated renal nerve growth factor mRNA in young spontaneously hypertensive rats

    No full text
    Nerve growth factor (NGF) controls the growth of sympathetic nerves and is increased in young spontaneously hypertensive rats (SHR). The NGF gene has been linked genetically with hypertension in the SHR strain and may explain high NGF mRNA levels. To test for genetic linkage between the NGF gene and its expression in vivo, we examined renal NGF mRNA levels in male SHR, control Donryu rats (DRY), and F2 rats derived from SHR and DRY at ages 2, 4, 10, and 20 weeks. Tail-cuff blood pressure was measured at 4, 10, and 20 weeks of age. NGF mRNA levels in SHR (NGF genotype: SS) were higher than those in DRY (NGF genotype: DD) at 2, 4, and 10 weeks of age (P<0.0001) but the same at 20 weeks of age. In the F2 generation, the S allele was associated with significantly (P=0.01) higher renal NGF mRNA levels at 2 weeks of age. Mean NGF mRNA levels fell (P=0.01) with age in F2 rats, and the difference between SS and DD genotype F2 rats diminished at older ages and was not significant. In F2 rats there was a positive correlation between the number of NGF S alleles inherited and tail-cuff pressure (P<0.007). Our findings indicate that the NGF locus is an important regulator of NGF mRNA levels. It is likely that mutations in or near the NGF gene explain in part high early NGF gene expression in SHR

    Independent genetic susceptibility to cardiac hypertrophy in inherited hypertension

    No full text
    Cardiac hypertrophy is a common but not inevitable complication of hypertension. Variation in heart size in hypertensives may reflect independent genetic susceptibility to cardiac hypertrophy. Using an experimental genetic model, we determined the location of quantitative trait loci responsible for cardiac hypertrophy and/or hypertension. We studied 182 F2 male animals derived from a cross of the spontaneously hypertensive rat and normotensive Donryu rats. Direct mean arterial pressure (MAP) and left ventricular (LV) mass were measured at 20 weeks of age, and DNA was obtained for linkage analysis. The estimated heritability of MAP was 62% and for LV mass expressed per unit of body weight (relative LV mass) was 76%. We used 185 polymorphic markers, with an average intermarker distance of 12.3 centimorgans for a genome-wide scan in a representative subgroup of 46 animals to identify preliminary quantitative trait loci, which were then mapped in all 182 male F2 rats. Two loci showed logarithm of the odds scores of > 4.0. One on chromosome 2, Lvm-1, was linked to relative LV mass but showed no evidence of linkage to MAP. Another locus on chromosome 1, Map-1, was linked to MAP. In the same region, a locus Lvm-2 was linked with relative LV mass. These data indicate the existence of a genetic locus on chromosome 2 of the spontaneously hypertensive rat that affects relative LV mass independently of blood pressure

    Low affinity nerve growth factor receptor gene co-segregates with decreased bodyweight and increased left ventricular weight in spontaneously hypertensive rats

    No full text
    1. The sympathetic nervous system influences the cardiovascular and hormonal systems and sympathetic innervation is dependent on nerve growth factor (NGF). The NGF gene is linked genetically to high blood pressure in the spontaneously hypertensive rat (SHR) and there exists a mutation in the SHR low affinity NGF receptor (LNGFR) gene. 2. To determine whether the LNGFR mutation was linked genetically with cardiovascular phenotypes we studied an F2 population derived from SHR and normotensive Donryu (DRY) rats. 3. Mean arterial pressure (MAP), left ventricular mass (LVM) and related phenotypes were measured in 127 20 week old male F2 rats and correlated with the inheritance of the SHR mutation (S) and/or the DRY allele (D) of the LNGFR. 4. Analysis of variance revealed that the S mutation was associated with a significantly lower bodyweight in F2 rats (P < 0.0001). 5. The S mutation was associated with a significant (P < 0.007) increase in LVM:bodyweight ratio, but not with differences in right ventricular or kidney weights corrected for bodyweight. We found no association between MAP and LNGFR alleles or genotypes. 6. These results suggest that the mutation in the signal peptide of LNGFR may serve as a useful marker for the analysis of genetic factor(s) involved in the differential determination of body size and heart weight
    corecore